Crime and Measurement

Crime and Measurement

Methods in Forensic Investigation

Myriam Nafte Bryan Dalrymple

Carolina Academic Press

Durham, North Carolina

Copyright © 2011 Myriam Nafte and Brian Dalrymple All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Nafte, Myriam.

Crime and measurement : methods in forensic investigation / Myriam Nafte and Brian Dalrymple.

p. cm.Includes bibliographical references and index.ISBN 978-1-59460-719-6 (alk. paper)1. Forensic sciences--Methodology. 2. Criminal investigation--Method-

ology. 3. Crime scenes. I. Dalrymple, Brian. II. Title.

HV8073.N26 2010 363.25'6--dc22

2010015170

Carolina Academic Press 700 Kent Street Durham, NC 27701 Telephone (919) 489-7486 Fax (919) 493-5668 www.cap-press.com

Printed in the United States of America

Contents

Contents	v
Foreword	xi
Acknowledgments	xiii
About the Contributors	XV
About the Authors	xvii
Introduction	xix

Part I Police and Forensics

Chapter 1 · The Forensic Method	3
Defining Forensic	3
Evidence Defined	4
Testimonial Evidence	4
Physical Evidence	5
Circumstantial Evidence	6
Processing Evidence	8
Expert Witnesses	9
Evidence: Search and Seizure	9
Chain of Custody	11
Fruit of the Poison Vine	13
Corpus Delicti	13
The Forensic Specialists	13
Chapter 2 · Science and the Legal System	21
Police Forces	21
Doctors and Criminals	23
Joseph Vacher	25
Alphonse Bertillon	27
Edmond Locard	31
The Rise of the Criminalists	32
Hans Gross	32
Nineteenth Century Microscopy	33
Locard's Dust	34
Trace Evidence and the Case of Marie Latelle	36

The Crime Lab	37
Dr. Wilfrid Derome	37
The Full-Service Crime Lab	38
Chapter 3 \cdot At the Scene of the Crime	41
I: The Crime Scene	41
Crime	41
The Role of the First Responder	41
Altered Scenes	43
Procedures to Consider	44
Securing the Scene	44
Rules for Protecting Evidence	46
II: Documenting the Scene	49
Police Photography	49
Surveillance Photography	53
Crime Scene Photography	54
Aerial Photography	56
Laboratory Photography	57
Mug Shots	58
Using Light to Detect Evidence	59
Implementing Lasers	59
First Case Use of Laser	61
Light Sources	62
Luminescence/Fluorescence	63
Fixed versus Variable Dynamic Range	65
The Use of Filters	67
Light-Emitting Diode (LED) Sources	68
Semiconductor Lasers	68
Measuring the Crime Scene	69
Forensic Reconstruction	70
III: Collecting the Evidence	74
Best Evidence Rule	74
Appraising Constraints	75
Principles of Evidence Recovery	76
Principles of Evidence Recovery and Collection	77
Rules for Packaging and Transporting Evidence	78
Safety	78
Continuity	79
Contamination or Cross-Contamination	80
Laboratory Prerequisites and Protocols	80
Perception in Court	81
Costs	81
Evidence Identification	82
IV: Cleaning the Crime Scene	83

Part II Death and Trauma

Chapter 4 · Death at the Scene	89
Pronouncing Death	89
Blood at a Crime Scene	90
Bloodstain Pattern Analysis and Properties	91
Assessing Bloodstains	91
Coroners versus Medical Examiners	96
Cause and Manner of Death	98
The Autopsy	99
Establishing Identity	99
External Examination	102
Internal Examination	103
Chapter 5 · Evidence of Trauma	105
The Mortems	105
Antemortem Injuries	105
Perimortem Injuries	107
Bullet Wounds	108
Sharp Force Injury	110
Blunt Force Injury	112
Postmortem Trauma	113
Intentional Dismemberment	114
Unintentional Dismemberment	116
Burned Bodies	119
Chapter 6 \cdot Sudden and Not-So-Sudden Death	123
Defining Death	123
Estimating the Time of Death	124
The Mortises	124
The Decomposing Body	127
Skeletonization	130
Insect Activity	132
Bodies in Water	133
Part III	
Positive Identification	
Chapter 7 · Positive Identification	139
Part I: DNA Fingerprints	139
DNA-Structure and Function	139
The DNA Fingerprint: The First Case	141
DNA Fingerprinting, Typing, and Profiling	143
DNA Extraction	144

The Use of DNA: Standards and Protocols	145
CODIS: The DNA Database	148
Part II: Fingerprinting	151
A Brief History	151
The Genetics of Fingerprints	154
Identical Twins	155
Fingerprint Composition	157
Fingerprint Classification	159
Pattern Types	159
Fingerprint Patterns	160
Identification	161
Fingerprints Defined	163
Livescan	164
Automated Fingerprint Identification System (AFIS)	164
Palm Prints	167
Children's Fingerprints	168
Fingerprint Development	169
Development Techniques	170
Nonporous versus Porous	170
Nonporous Exhibits	172
Fingerprint Powder	172
Cyanoacrylate (CA) Fuming	173
Vacuum Metal Deposition (VMD)	176
Iodine	178
Porous Exhibits	179
Silver Nitrate	179
Ninhydrin	179
Zinc Chloride	180
Diazafluoronone (DFO)	181
1,2 Indane Dione (ID)	182
Genipin	183
Lawsone	183
Physical Developer (PD)	183
Oil Red O	186
Atypical Techniques	187
Blood Reagents	187
Amido Black	188
Leuco Crystal Violet (LCV)	188
Acid Yellow	188
Luminol	189
Adhesive Substrates	189
Lightning/Liquinox	190
Wet Cars and Vinyl	191
Small Particle Reagent (SPR)	191
Guide: How to Powder and Lift Fingerprints	192

Powder Choice	192
Fluorescent Powders	193
Magna Powder	193
Brush Technique	193
Lifting the Latent Print	194
The Knaap Process	195
Marking Impressions	197
ACE-V: The Identification Protocol	197
Fingerprints in Court	198
The Mayfield Case	199
The Shirley McKie Case	199
Why Do Criminals Continue to Touch Things?	200
Part III: Facial Reconstruction	201
The Police Sketch: Two-Dimensional Facial Reconstruction	201
Three-Dimensional Facial Reconstruction	202
Current Methods	204
Computerized Facial Reconstruction	205
Biometrics	208
Individuality	208
Chapter 8 . Tracks Treads and Technology	213
Bullets and Firearms	213
Firearms as Evidence	213
Spiral Grooves and Striations	213
Cartridge Cases	214
IBIS: Integrated Ballistics Identification System	210
Computer Crime Scenes	220
Internet Child Exploitation	2.2.2
CETS: Child Exploitation Tracking System	222
Footwear. Tire. and Tread Impressions	223
Footwear Evidence	223
Class vs. Accidental Characteristics	224
Evidential Value	225
Barefoot Impressions	226
Two-Dimensional Impressions	227
Dust Impressions	228
Subtraction Method	229
Grease, Oil, or Moisture Impression	230
Blood	230
Soil Deposition	230
Three-Dimensional Impressions	231
Soil	232
Snow	232
Wet Cement	234
Soft Substrates	236

Sand	236
Tire Track Impressions	236
Appendix · Case Studies	239
Case 1: Positive Identification after Intentional	
Dismemberment	239
Case 2: Latent Palm Prints	242
Case 3: Identifying Evidence with Alternate Light Source	
vs. Laser	244
Case 4: High-Velocity Impact	245
Case 5: Suicide vs. Homicide	246
Case 6: Footwear Impressions in Blood	248
Case 7: Paper Packets	250
Case 8: Footwear Impression on Shirt	252
Case 9: Anonymous Letters	255
Bibliography and Suggested Readings	257
Index	267

Foreword

"... And they took Joseph's coat and killed a kid of the goats, and dipped the coat in the blood ... and they brought it to their father and said: This have we found: know now whether it be thy son's coat or no.... And he knew it and said: It is my son's coat; an evil beast has devoured him...."

Genesis 37:31-33

This touching epigraph from the book of Genesis brings the story of the sons of Jacob, who after selling their younger brother, Joseph, to the Ishmaelites, wanted their father to believe he was dead. Jacob had no reason to suspect that the story was a fake, but a simple forensic test could have told him immediately that not only was the blood not his son's, it was not even human. Today, legal systems depend much less on human testimony. They can lean, instead, on the collection and scientific interpretation of physical evidence. Besides providing much more relevant information and being far more objective, these methods reduce the need for a "brilliant detective," who can resolve complicated crime mysteries single-handedly, leaning solely on his power of reasoning.

As a matter of fact, observation and interpretation have been the primary components of crime investigators since early times, but only in the middle of the nineteenth century have scientific methods become a significant tool in such investigations. The continuous refinement of analytical techniques often helps law officers in using the tiniest bits of physical evidence in their investigations, thus enabling them to decipher many crimes that would otherwise have remained unsolved, and provide solid and objective evidence to be presented in courts of law.

In this book, Myriam Nafte and Brian Dalrymple illuminate the concept of forensic science from a rather unusual angle: measurements. They show that measuring is actually "the core of almost every discipline in forensic science." Furthermore, *Crime and Measurement* provides readers a wide spectrum of topics pertaining to the application of science in criminal investigations. They start with basic definitions, followed by a short, evolutionary history of criminalistics and forensic science. They describe and discuss numerous forensic disciplines, from crime scene work to the interpretation of DNA results, the relationship between forensic scientists, law-enforcement agencies, and the legal system. Great emphasis is placed on death investigations.

xii FOREWORD

Crime and Measurement is highly recommended both as a reference and as a textbook to be used in classrooms, as well as support material for police investigators, criminal lawyers, and anyone involved in the administration of justice.

Dr. Joseph Almog Hebrew University of Jerusalem

Acknowledgments

The authors thank the following people for their professional insight, participation, and generous contribution of time, case material, and images. Dr. Joseph Almog, Hebrew University of Jerusalem Walter Baker, Eagle Investigations, London, Ontario Alexandre Beaudoin, Research and Development, Sûreté du Quebec Staff Sergeant Dennis Buligan, Toronto Police Forensic Identification Services Carl Carlson, Supervisor, Fingerprint Identification Section, Kansas City Missouri Police Dept. Derald Caudle, AFIX Technologies Sergeant Scott Collings, Bloodstain Pattern Analyst, Hamilton Police Service Brian Dew, Senior Consultant, Ron Smith & Associates, NC Marc Dryer, University of Toronto Dr. J. M. Duff, ret., Xerox Research Centre, Canada Christine Farmer, Ph.D., Artist, Stourbridge, UK Marie-Eve Gagne, Research and Development, Sûreté du Quebec Darryl Hawke, Forensic Analyst, Electronic Crime Section, Ontario **Provincial Police** Lesley Hammer, Hammer Forensics, Anchorage, AK Michelle Hirson, Design/Layout Work Scott Howard, AFIX Technologies David Juck, Manager, Forensic Identification Bureau, York Regional Police Kansas City Police Regional Crime Laboratory, MO Dr. Anne Keenleyside, Trent University Dr. Richard Lazenby, University of Northern British Columbia Dr. Helene LeBlanc, University of Ontario Institute of Technology Eugene Liscio, P. Eng., AI2-3D Animations John Norman, Senior Forensic Analyst, Forensic Identification Services, Ontario Provincial Police Andrew Nostrant, Buffalo Police Department. Crime Scene Unit

Jo Orsatti, Toronto Police Forensic Identification Services Dr. Michael Peat, Editor, *Journal of Forensic Sciences* Christopher Power, Royal Canadian Mounted Police Robert Ramotowski, Senior Scientist, U.S. Secret Service Greg Schofield, Crime Scene Drafting Technician, Toronto Police Forensic Identification Services David Sibley, Bloodstain Pattern Analyst, Forensic Identification Services, Ontario Provincial Police Ron Smith, Ron Smith & Associates, MS Dr. Della Wilkinson, Research Scientist, Royal Canadian Mounted Police Dr. Brian Yamashita, Research Scientist, Royal Canadian Mounted Police Jessica Zarate, Michigan State Police

Larry O'Grady, Toronto Police Forensic Identification Services

About the Contributors

Joseph Almog was born in Tel Aviv in 1944. He obtained his Ph.D. in organic chemistry from the Hebrew University of Jerusalem and conducted research with Nobel Prize laureate Sir Derek Barton, at Imperial College in London, and with Sir Jack Baldwin at MIT. Dr. Almog joined the Israel Police in 1974, and in 1984 was appointed Director of the Division of Identification and Forensic Science (DIFS), the national crimelab of the State of Israel. In October 2000, Dr. Almog retired from police service and joined the Science Faculty of the Hebrew University of Jerusalem, where he is currently Professor of Forensic Chemistry, at the Casali Institute of Applied Chemistry. His main fields of interest are: development of simple field-tests for crime-scene officers, explosives detection and identification, and the visualization of latent fingerprints. Over the past two decades, he has been active in advancing forensic science as a tool against terrorism. He has written over 100 articles and book chapters in chemistry and forensic science. In 2005, Dr. Almog was awarded the Lucas Medal by the American Academy of Forensic Sciences "for outstanding achievements in forensic science." In March 2009 he was appointed the first non-North American member of the editorial board of the Journal of Forensic Sciences.

Scott Collings joined the Hamilton Police Service in 1980 as a civilian member. In 1985 he embarked on a career as a sworn member and has worked in several areas of the police service. In 2001 he became a member of the Forensic Services Branch. Sergeant Collings is a member of the Canadian Identification Society (CIS), the International Association of Bloodstain Pattern Analysts (IABPA), and the International Association for Identification (IAI), and he is a past member of the Ontario Police College Forensic Advisory Board. In 2005 Collings became the course coordinator of the Ontario Police College-sanctioned Scenes of Crime Officer (SOCO) training program in Hamilton, where he instructs officers from Hamilton and other local police services. In 2006 he completed the training and mentorship required to become Hamilton's first Certified Bloodstain Pattern Analyst, one of approximately forty in Canada. He has been a co-instructor on the Basic Bloodstain Recognition Course and the Advanced BPA Course at the Ontario Police College, and has sat on the BPA Certification Board. He has been published in the Canadian Identification Society journal and provided expert testimony to Ontario district courts on several occasions. With training in Forensic Post Disaster procedures and subsequent to the earthquake of January 2010, Collings was deployed to Haiti as part of a Disaster Victim Identification (DVI) team as coordinated by the RCMP. Sergeant Collings currently resides in Ancaster, Ontario with his wife, also a Hamilton officer, and his two teenaged children.

Wade Knaap is a Forensic Identification Specialist with the Toronto Police Service, and the training officer in the Forensic Identification Services Unit. In addition to providing forensic training needs to police and military personnel, Wade facilitates internship and research opportunities for university students enrolled in Forensic Science programs at Ontario universities. Detective Constable Knaap also regularly lectures and conducts workshops at universities and colleges throughout Canada and the United States on forensics-related topics. He is the serving second Vice President of the Canadian Identification Society, the Chair of the Ontario Police College Forensic Advisory Board, and a member of the Forensic Advisory Committee at the University of Ontario Institute of Technology. Knaap has been published numerous times in the Journal of Forensic Identification regarding forensic identification concepts. In 2002-2003, he was the recipient of the Al Waxman Award for Excellence in the Field of Forensic Identification. Wade lives in Port Perry, Ontario, with his wife, Charlene, and his three teenaged children.

About the Authors

Brian Dalrymple, formerly manager of the Ontario Provincial Police Forensic Identification Services, was personally responsible for deciphering some of the most challenging crimes that took place in the province of Ontario during the last quarter of the twentieth century. He co-developed the use of lasers to detect fingerprints and introduced the first police computer image enhancement service in Canada. He was awarded the John Dondero Award in 1980 by the International Association for Identification for "the most significant and valuable contribution to identification in the previous year." In 1982 he received the Foster Award from the Canadian Identification Society. In 1984 he was presented with the Lewis Minschall Award for "outstanding contribution to the fingerprint profession." In *Crime and Measurement* he presents a wealth of personal experience, applicable to the various phases of technical and scientific crime investigations.

Myriam Nafte is a forensic anthropologist and visual artist who continues to volunteer her services for criminal casework in the United States and Canada. She received her honors B.A. in anthropology, a B.Ed. degree from York University, and completed an M.A. in physical anthropology at McMaster University in 1992. Since then she has taught college-level courses and police workshops in skeletal biology, forensic anthropology, and archaeology—specifically shallow grave recovery methods. Over the past twelve years, her artwork has been exhibited throughout North America in private shows and museum galleries highlighting anatomical studies and the use of text. Currently, she a Ph.D. candidate at McMaster University researching human remains as material culture in both a historical and contemporary context. She is author of the book *Flesh and Bone: An Introduction to Forensic Anthropology*.

Introduction

"Every measurement slowly reveals the workings of the criminal. Careful observation and patience will reveal the truth."

-Alphonse Bertillon

All aspects of investigating a crime scene and its evidentiary material entail a science of measuring whether it is in the preliminary police sketch of the site, the counting of ridges and dots on a fingerprint, or observing the pattern and direction of blood spatter. Measuring for comparison, observation, analysis, and interpretation is, in fact, the core of almost every discipline in forensic science. In a pure sense, the science of forensics is the thoroughly objective mathematic search for the patterns, sequences, and traits left behind in the physical traces of a criminal and his crime.

A variety of identification systems have evolved over the past two hundred years that require lesser amounts of evidentiary material to measure but have greater and more vivid results. Forensic light sources, high-powered microscopes, and computer technology have opened up a new world in the extraction and examination of physical evidence from the once obscure 'dust' of a crime scene.

While examiners still look at the traditional array of latent evidence such as fingerprints, fibers, and blood, this can now include three-dimensional views of bullet striations, colorful genetic markers, and virtual crime scene reconstructions.

The justice systems of the world rely heavily on this continually evolving technology, a variety of which is offered in almost every discipline of forensic science. To keep up with increasingly sophisticated crimes and advances in technology requires constant resource and intelligence sharing. Hence, where once the relationship between science and the law was tenuous at best, good legal investigations now draw exclusively from a scientific methodology and an array of analyses offered by lab and criminalist technicians.

Accordingly, the forensic methodology detailed throughout the pages of *Crime and Measurement* can best be summarized as the ultimate and varied search for everything from mass, volume, texture, and length, to distance, height, shape, and sequence as revealed in the endless possibilities inherent in all forms and traces of physical evidence. As an introductory guide, the goal of this book is to provide students in law enforcement, members of the justice system, law enforcement professionals, criminalists, and anyone interested in the field, a starting point in understanding the pivotal relationship between police, the investigator, and the scientist, in service of the law. From the first responder called to a death scene to the final analysis in the courtroom, *Crime and Measurement* outlines the processes, the rules, the protocols, and the principles of what it takes and what it means to measure and solve crime.

Beginning with the definition of all things forensic, chapter 1 outlines the various branches of the growing field of forensic science and offers a thorough discussion of what constitutes evidence, testimony, and an expert witness. Chapter 2 delves briefly into the history of criminology through a look at the emergence of uniformed police forces and the establishment of criminalists. In its exploration of the relationship between science and the legal system, this chapter also highlights the seminal work of pioneers such as Alexandre Lacassagne and Edmond Locard, founders of legal medicine, as well as Hans Gross, the judicial magistrate who officially brought science and the law together.

Going right to the scene of the crime, chapter 3 focuses on the primary role of police beginning with the requirements of first responders, the rules around barricading a crime scene, and a complete overview of the principles of search and recovery. The chapter also examines evidence collection and a special section on the use of forensic light sources in detecting latent evidence and reconstructing crime scenes.

Chapters 4, 5, and 6 discuss the events and protocols around encountering death at a scene, highlight various forms of trauma, and outline the processes of death and decomposition.

Three methods used by police and forensic scientists in assigning a positive identification to both victim and criminal are thoroughly outlined in chapter 7. The relatively short history and highly controversial use of DNA analysis is detailed from its first case in the 1980s to the current policies surrounding its use and storage in databases around the world. Following this section is a discussion of the much longer history of fingerprinting in pursuing and keeping track of criminals over the past two hundred years. Descriptions include the varying characteristics and features of the tips of our fingers that make us unique, and how technicians map these traits to identify and distinguish perpetrators. The chapter concludes with the popular and visually dynamic field of facial reconstruction.

Chapter 8 investigates an array of evidence, and the methods used by police to access, uncover, and highlight the latent (hidden) information in these items. Firearms, computer data, footwear, and tires all leave their mark on a variety of surfaces, and the challenges in documenting, retrieving, or reproducing these marks are presented in this last section. Finally the appendix offers a series of high-profile cases provided by the authors and contributors. Each case highlights a variety of methods and tools that were employed to solve the crimes presented, and best illustrate the many areas of forensic analyses outlined in the book.

Throughout each chapter there are graphic photographs depicting human bodies that have sustained severe trauma or are in various stages of decay. The use of such images comes with an understanding that *mortui vivo docent*—the dead teach the living. To honor this process and out of respect for the victims and their families, the photographs published do not reveal their identity or the details of their case history.